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Abstract—Objective: Children worldwide are becoming increasingly inactive, leading to significant wellness challenges. Initial findings
from our research team indicate that robots could potentially provide a more effective approach (compared to other age-appropriate toys) for
encouraging physical activity in children. However, the basis of this past work relied on either interactions with groups of children (making it
challenging to isolate specific factors that influenced activity levels) or a preliminary version of results of the present study (which centered
on just a single more exploratory method for assessing child movement). Methods and Procedures: This paper delves into more controlled
interactions involving a single robot and a child participant, while also considering observations over an extended period to mitigate the
influence of novelty on the study outcomes. We discuss the outcomes of a two-month-long deployment, during which N = 8 participants
engaged with our custom robot, GoBot, in weekly sessions. During each session, the children experienced three different conditions: a
teleoperated robot mode, a semi-autonomous robot mode, and a control condition in which the robot was present but inactive. Results:
Compared to our past related work, the results expanded our findings by confirming with greater clout (based on multiple data streams,
including one more robust measure compared to the past related work) that children tended to be more physically active when the robot was
active, and interestingly, there were no significant differences between the teleoperated and semi-autonomous modes in terms of our study
measures. Conclusion: These insights can inform future applications of assistive robots in child motor interventions, including the guiding
of appropriate levels of autonomy for these systems. Clinical Impact: This study demonstrates that incorporating robotic systems into play
environments can boost physical activity in young children, indicating potential implementation in settings crafted to enhance children’s
physical movement.
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I. INTRODUCTION

PHYSICAL activity plays an essential role in fostering
young children’s overall health, contributing positively to

not only cognitive, social, and motor development [1, 2, 3],
but also improving later psychosocial and cardiometabolic
health [4] and the construction of a foundation for healthy
habits. Unfortunately, research indicates that a significant
number of children are not meeting the recommended physical
activity level guidelines [5], a fact that is contributing to
high current levels of childhood obesity and other negative
health outcomes [6]. While toys that motivate crawling and
assist with children’s walking are widespread, there is a
notable scarcity of toys designed to motivate young children
to be active and explore their environments once they are
ambulatory. By introducing robots as motivators for physical
activity, we can offer attention-grabbing features (e.g., lights
and sounds [7, 8]) while making an adaptable system that is
customizable across users. Past research has also shown that
robots can be more motivational and peer-like than other types
of technology [9, 10], which can lead to potential positive out-
comes such as our work’s envisioned robot-mediated physical
activity promotion for young children.

Assistive robotics, the study of how robots can support peo-
ple in situations from health interventions to education [11],
offers one potentially groundbreaking solution for addressing
the sedentary behavior epidemic by motivating child move-
ment and exploration. A notable example of this potential
is demonstrated in a single-session pilot study that utilized
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Fig. 1. Overview of our study design and key results. The lower right black
rectangle illustrates the positive results of the robot on child users.

a Sphero robot to encourage infants to explore an environ-
ment [12]. To encourage young children to engage in physical
activity and explore, our team previously designed and built an
assistive mobile robot with self-propulsion abilities and built-
in toy-inspired features (i.e., lights, sounds, and bubbles) [13].
This new paper covers an evaluation of this robot with a larger
number of users and over a longer timescale.

The central research objectives behind this work were to
assess whether a mobile assistive robotic system can promote
and encourage children with typical development to move
and how this intervention’s success changes over time when
incorporating different methods to track movement. We ap-
proached this topic by studying child-robot interaction in a
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lab setting over multiple months of interaction. In this paper,
Section II discusses how robots possess a unique peer-like
presence that may be unique (compared to other technologies)
for encouraging healthy behaviors. Our assistive robot, GoBot,
as described in Section III and shown in Fig. 1, interacted
with eight child participants over two months of study sessions
(Section IV). The results in Section V hint that the presence
of an active robot in the play space is beneficial, whether the
robot is directly teleoperated or semi-autonomous. Section VI
discusses main insights and important context for the work.
The work contributes 1) empirical findings within the emerg-
ing field of mobile assistive robotics and 2) a semi-autonomous
control strategy capable of eliciting the same child motion
levels as observed during direct human teleoperation.

II. RELATED WORK

Related work in the promotion of physical activity, assistive
robotics, and novelty in human-robot interaction informed our
longitudinal study design.

Promoting Physical Activity: Approaches from broad national
initiatives to commercial products have been developed with
the goal of increasing physical activity levels for children.
The “Let’s Move!” program was developed with former First
Lady Michelle Obama and focused on promoting physical
activity for children, providing parents with tools for better
food choices, and increasing awareness of the child obesity
epidemic in the United States [14]. While the program showed
some impact in terms of obesity rates for very young chil-
dren, the overall prevalence of childhood obesity has not
significantly diminished since its introduction [15]. Techno-
logical solutions for encouraging physical activity include
video games (e.g., Ring Fit Adventure [16]) and smartphone
applications (e.g., the applications mentioned in [17]). These
types of technologies have shown some efficacy in promoting
physical activity, especially in short-term use, but require
further longitudinal study to understand their influence beyond
the point of novelty [17]. Assistive robots like GoBot may
offer an engagement advantage compared to other tools for
physical activity promotion due to people’s tendency to view
robots as more peer-like and influential than non-embodied
technologies such as phones or computers [9]. We designed
our robot to facilitate developmentally appropriate interactions,
which we thought might effectively encourage child motion
over repeated sessions.

Assistive Robots for Physical Activity: Assistive robots for
physical activity promotion have been mainly targeted to-
wards older adults, with occasional instances of work focused
on young children. In the older adult space, Gorer et al.
used a NAO robot as an exercise coach [18], and robots
have supported rehabilitation activities for individuals (often
older adults) after a stroke [19, 20]. In work for promoting
child activity, assistive robots have shown initial promise for
supporting the motor development of children with cerebral
palsy [21] and autism spectrum disorder [22]. NAO and Dash
robots were used in tandem in past work to encourage a
child with Down syndrome to perform motor activities such as
crawling up a ramp [23]. For more general child populations,

the “Cratus” robot encouraged children to vigorously move the
robot and themselves while playing a game in other related
work [24]. Our own preliminary studies with GoBot showed
that the robot could encourage standing and engagement while
the robot was active [25]. The small sample sizes and short
study durations of the past efforts warrant further follow-up
research; our present work aimed to address these gaps.

Novelty in Human-Robot Interaction: Human interactions with
a robot or other technologies for the first time often shows a
novelty effect which changes after repeated interactions [26].
For example, users might become less interested in a tech-
nology as they habituate to it. Accordingly, it is imperative to
perform longer-term empirical studies to understand the impact
of robots, but most longitudinal studies to date have been with
older adults [27] or in applications outside of physical activity
promotion, such as therapy [28] or education [29]. Kanda et
al. suggest that two weeks are needed for the robot impact
to show up in a human-robot interaction study [30], while
Sung et al. suggest that two months are needed to get past the
point of novelty in a human-robot interaction study [31]. Thus,
we conducted our study over a two-month timeline to begin
to understand the long-term effects of GoBot in promoting
physical activity for young children.

III. SYSTEM DESIGN

This section describes the GoBot robotic system and key
operating mode information that is needed for understanding
our study design and results.

A. Robotic System

GoBot, the assistive robot used in this study, is a custom
robotic system designed in collaboration with the Oregon State
Disability and Mobility Do-it-Yourself Co-Op, as pictured
in Fig. 1. GoBot’s components (i.e., a mobile TurtleBot2
base with onboard Raspberry Pi 4 processor, that can be
directly teleoperated with a PlayStation DualShock4 [PS4]
controller or execute autonomous LiDAR-based routines) and
three rewards (i.e., custom lights, sounds, and bubbles) are
explained in our previous work [32]. For the safety of the robot
and of users, GoBot is surrounded by a foam-padded roll cage
that cushions any impacts with the environment. Additional
safety measures include covers for the robot’s onboard user
interface and an enclosure around the TurtleBot base that
prevents children from deactivating the robot or reaching any
robot wiring. GoBot’s design process is described in our
previous work [33].

B. Robot Operating Modes

GoBot was designed to be user-friendly, enabling individ-
uals with little-to-no robotics experience (such as clinicians,
kinesiologists, and parents) to operate GoBot with minimal
training. In the present work, GoBot operated in two modes:
teleoperated and semi-autonomous. A diagram displaying the
operating modes appears in Fig. 2 and 3. The use of the
operation modes in the child-robot interaction study conditions
is further explained in Section IV.
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In the teleoperated mode, GoBot’s base motion and reward
deployment were fully controlled by a human operator via the
left joystick for linear movement, right joystick for angular
movement, and x, square, circle, and triangle for rewards
on the PS4 controller. The mapping for the actions can be
seen in Fig. 2. The goal of the operator was to entice the
child to follow GoBot by performing four different patterns
of movement (i.e., moving in a circle, square, X, or triangle)
across the play area while deploying rewards. Each reward
was activated at least once per session, but otherwise, the
operator freely combined rewards as deemed appropriate when
the child was within 1 ft (30.5 cm) of the robot (i.e., to reward
interaction) or more than 2 ft (61.0 cm) away from the robot
(i.e., to encourage re-engagement).

In semi-autonomous mode, GoBot executed a keep away
algorithm, which is explained in our previous work [32].
Briefly, in this mode, the robot flees the nearest object.

IV. METHODOLOGY

To investigate GoBot’s effect on child physical activity over
time, we conducted a two-month-long child-robot interaction
study. Our university ethics board approved this study under
protocol #IRB-2020-0723.

A. Study Design

To assess the impact of different conditions on promoting
child movement during the study sessions, a within-subjects
experiment was conducted. We compared the effects of the
following three conditions:

• Control condition (10 minutes per session): GoBot was
present during the play session but was not active. The
children could still interact with GoBot (i.e., touching,
pushing, pulling) the passive robot.

• Teleoperated condition (Experimental condition 1; 5 min-
utes per session): GoBot was fully teleoperated by a

Fig. 2. Schematic flow of the teleoperated mode, which operates fully
manually. The robot movements are activated using the joysticks, and rewards
are activated using the buttons.

Fig. 3. Schematic flow of the semi-autonomous mode, which can be turned
on/off by pressing the R1 trigger button on the controller. In this mode, GoBot
uses LiDAR sensing to autonomously perform a keep away routine, while a
human operator manually activates rewards.

research team member, using the protocol more fully
described in Section III-B.

• Semi-autonomous condition (Experimental condition 2; 5
minutes per session): GoBot ran in the semi-autonomous
mode, as fully described in Section III-B. In short, the
base motion was autonomous, rewards were triggered
manually, and autonomous behavior was interruptable.

In all three conditions, the child had the freedom to engage
with a variety of developmentally appropriate toys within the
designated play space. A modified Latin squares method was
employed to maintain a balanced order of conditions across
the user group.

To gain a longitudinal perspective on participant experi-
ences, the study spanned a duration of two months. Participants
attended eight weekly sessions, where each session followed a
pre-assigned sequence of the three aforementioned conditions.
This approach allowed for a comprehensive examination of the
participants’ experiences over an extended period.

B. Participants

Eight participants took part in the study (5 male, 3 female).
We recruited participants through local daycares and farmers’
markets. Participant ages ranged from 2.01 to 3.35 years old
(M = 2.52 and SD = 0.50). All recruited children were
typically developing, and three had previous experience with
other robots (specific robots not recorded).

C. Measures

We used a mixed-methods approach and collected two
types of data during our study: behavioral and self-reported.
The behavioral data included measurements from wearable
sensors, as well as footage captured by an overhead video
camera, documenting each play session. The self-reported data
comprised of parent responses to surveys.

1) Behavioral Measures: Accelerometer and gyroscope
data was recorded at 100 Hz using three GT9X ActiGraph
sensors, which the child wore on the wrist, ankle, and hip. A
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GoPro Hero Black 10 camera running at 30 Hz was used to
record overhead footage. We also used a GoPro Hero Black
7 running at 30 Hz to record a side view of the play space.
We captured a front-facing view of the session using a Canon
camera. These recordings were used to capture information on
child motion levels and proximity to the robot.

2) Self-Reported Measures: The parents of the participants
involved in the study completed surveys about general and
study-specific experiences with robots at the beginning of
the study, as well as after each session and at the end of
the study. In the pre-study survey, we used the Likert-type
standard questions of the Negative Attitudes towards Robots
Scale (NARS) [34] and the Trust Perception Scale-HRI [35]
to gauge pre-existing participant perceptions of robots. De-
mographic questions captured information about participant
age, gender, and development. Finally, free-response survey
questions asked parents about experiences with robots and
thoughts on robot usefulness. The post-session survey in-
cluded questions about child engagement with the robot and
perceptions of GoBot. Custom Likert-type questions in this
survey asked the parent to rate child engagement with GoBot,
general perception of GoBot, and belief in robot usefulness for
child well-being on a 7-point Likert-type scale from Strongly
Disagree (1) to Strongly Agree (7). Parents also completed
free-response questions about perceptions of the robot and
child-robot interactions during each session. In the post-study
survey, the same NARS and trust perception questions were
asked as in the pre-study survey. Free-response questions asked
parents about perceptions of GoBot and child interactions with
the robot, as well as ideas for system use and changes to the
system.

D. Procedure

Prior to commencing the study, parental informed consent
was obtained. At the start of the first session, before the
initiation of play, parents completed the pre-study survey and
a demographic survey. During each session, the child wore the
three ActiGraph sensors, positioned on the right ankle, right
wrist, and hip.

In each session, the three conditions (i.e., control, teleop-
erated, and semi-autonomous) occurred in the pre-assigned
order. During the session, the child was in a play area with a
consistent and developmentally appropriate assortment of toys,
which can be seen in Fig. 4. Parents were also present in the
study space. Children played freely in the space during each
session.

After each play session, the sensors were removed from
the child and the parents completed the post-session survey
and were compensated $25 for their participation. The full
study lasted eight sessions with each session lasting about 25
minutes. After the last session, parents completed the post-
study survey.

E. Hypotheses

In this work, we tested four hypotheses:

H1: The children will move more during the experimental
conditions (i.e., teleoperated and semi-autonomous)

compared to the control condition. This idea is sup-
ported by past single-session work on robot-mediated
physical activity promotion for children [24]; our
efforts assess the same idea in a longer-term context.

H2: Child physical activity levels will be similar between
the two experimental conditions. This hypothesis is
based on observations from our own exploratory pilot
sessions; both experimental modes appeared to be
promising for encouraging movement.

H3: The effectiveness of the robot for motivating motion
will decrease over time. This hypothesis is based
on related work on the novelty effect (e.g., [26]),
which typically shows a decline in interest in new
technologies over the course of habituation.

H4: Proximity between the child and robot will be closer
for both experimental conditions compared to base-
line. This hypothesis is based on informal observa-
tions during pilot sessions.

F. Analysis

We analyzed the data from the ankle-mounted ActiGraph
sensor (as this location specifically reflects repetitive walking
and running patterns well [36]), overhead GoPro camera, and
self-reported survey responses focused on perceptions of the
child’s interaction with GoBot and general perceptions of
robots.

For all session-wise objective data, to obtain comparable
values across conditions, we normalized the measured out-
comes by the duration of the condition. We tested for signifi-
cant differences between conditions and across sessions using
a two-way repeated measures analysis of variance (rANOVA)
test. The rANOVA used an α = 0.05 significance level and
were conducted using jamovi 2.3.18 [37, 38]. We used Tukey’s
HSD test for pairwise comparisons in the case of significant
main effects. We report effect sizes using η2, where η2 = 0.01
is considered a small effect, η2 = 0.04 is a medium effect, and
η2 = 0.09 is a large effect [39].

ActiGraph Data: We first extracted the accelerometer and
gyroscope data from the ActiGraph sensor using the ActiLife
version 6.13.4 software. This data was evaluated for ankle
movement counts using the algorithm presented in [40]. Based
on this algorithm, we used each participant’s raw ankle sensor
recordings to calculate the root mean square (RMS) accel-
eration and angular velocity, and then computed the specific
thresholds for acceleration and velocity of each participant
from the individual user datasets. To begin this computation,
detrending was performed utilizing the median. Data points
falling outside the rejection range of a=[-1.02, 1.32] m/s2

and below the value of w=[0.32] rad/s were then excluded.
Following this step, a moving average filter with a window size
of 0.5 seconds was applied to smooth the data, reducing noise.
Next, we identified peaks exceeding 1.0 m/s2 for acceleration
and 0.1 rad/s for angular data, which helped to distinguish
important changes in the dataset. Finally, each participant’s
unique threshold was set by taking the mean of the local
maxima and subtracting half the standard deviation. A so-
called vigorous movement started when both velocity and
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Fig. 4. Overhead view of the play environment showing a participant
interacting with the robot.

acceleration exceeded their respective thresholds and stopped
when acceleration and velocity returned to a level below the
threshold. An example of the ankle movement data can be
seen in our previous work [32]. We analyzed only the ankle
sensor recordings since we were most interested in walking
movement in the present study.

Overhead Video Tracking: For each session, we utilized the
overhead video captured by the GoPro camera and employed
a specialized region-of-interest (ROI) tracker, OverTrack, to
estimate the children’s overground movement during each
session. OverTrack is publicly available for use [41] and has
been validated for use as a tool for post hoc positional analysis
in [42]. For every video, the first step entailed a researcher
manually creating bounding boxes around the child, the robot,
and the play environment. The researcher would then supply
the tool with a reference measurement from the environment
using one of the floor foam mats, which measure 2×2 feet
(61.0×61.0cm). When the tracker lost track or sight of a region
of interest, the researcher would redraw boxes as needed.
The play environment is shown in Fig. 4. The ROI tracker
outputted the centroids of the bounding boxes for both the
robot and the child in each video frame. To determine the
overall extent of the child’s movement during each session,
we computed the cumulative change in the child’s centroid
location between consecutive frames, excluding any positional
changes exceeding 0.5 feet (15.2cm; unlikely considering the
maximum speed of the child ambulation [43]), as well as
changes smaller than 0.06 feet (1.8cm; likely to be noise).
By implementing a different (and less exploratory) method
to evaluate child movement, we were able to collect more
information to validate the actual child physical movement.
This reading, coupled with the ActiGraph data, help us fur-
ther understand how effective GoBot is to promote physical
movement.

Child-Robot Spacing: Utilizing the same data outputted by
OverTrack, we calculated the spacing between the child and
robot during sessions using the Euclidean distance between
the centroids of the bounding boxes. We report the mean and
standard deviation of this value across sessions and conditions.

Survey Responses: We used the session-wise survey data to
understand engagement and well-being perceptions and the

Fig. 5. Distributions of normalized ankle movements per minute across
conditions. Boxplots include boxes from the 25th to the 75th percentiles,
center lines with a circle marker for medians, asterisks for means, whiskers
up to 1.5 times the interquartile range.

pre- and post-study surveys to compare attitudes towards
robots over the course of the study to further understand the
parents’ attitude towards GoBot’s engagement of their child by
exploring social and emotional aspects of the interaction. The
engagement and well-being self-reports were collected only
once per session and thus could not be used to compare across
condition experiences; the descriptive statistics of these ratings
mainly helped to provide a rough understanding of perceived
experiences. To compare the pre- and post-study NARS and
trust ratings, we performed one-way rANOVA tests with an α
= 0.05 significance level.

V. RESULTS

All participants successfully completed the full eight ses-
sions of the study protocol. Recording errors occurred for
the ActiGraph data during two sessions (one session for each
of two participants). Recording errors also occurred in the
overhead camera footage for one session with Participant 2
(for all conditions) and one session with Participant 4 (for
the experimental conditions). All other sensor and survey
data was successfully captured. The results for the ActiGraph
recordings, overhead tracking, child-robot spacing, and survey
data are presented below.

ActiGraph Results: The distributions of normalized ankle
movements across conditions and over time are illustrated in
Figs. 5 and 6. The results of the two-way rANOVA across
conditions and sessions showed a significant main effect for
conditions (F (2,10) = 4.29, p = 0.045, η2 = 0.028). However,
no pairwise differences were significant after post hoc com-
parisons with Tukey’s HSD. There was no significant main
effect across sessions (p = 0.804). The average ankle motion
rates tended to be higher for both experimental conditions
(compared to the control) for all sessions but one. Specifi-
cally, compared to the control, the average ankle movement
rates were higher for the teleoperated condition during seven
sessions and were higher for the semi-autonomous condition
during all eight sessions.

Overhead Video Results: The distributions of normalized child
movement across conditions and over time are illustrated in
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Fig. 6. Ankle movements per minute over study session. Markers show the
mean and error bars show standard error.

Fig. 7. Distributions of normalized child total movement across conditions.
Boxplots include boxes from the 25th to the 75th percentiles, center lines with
a circle marker for medians, asterisks for means, brackets for significance, and
whiskers up to 1.5 times the interquartile range.

Figs. 7 and 8. The results of the two-way rANOVA across
conditions and sessions showed a significant main effect for
conditions (F (2,10) = 4.10, p = 0.050, η2 = 0.071). Pairwise
testing showed significantly higher movement rates for the
semi-autonomous condition than the control condition (p =
0.048). There was no significant main effect across sessions (p
= 0.701). The average child motion rates tended to be consis-
tently higher in both experimental conditions compared to the
control across most sessions. More precisely, in comparison
to the control, the child movement rates were elevated during
seven sessions for the teleoperated condition and during all
eight sessions for the semi-autonomous condition.

Child-Robot Spacing Results: The distributions of the chil-
dren’s spacing from the robot across conditions and over time
are illustrated in Figs. 9 and 10. The results of the two-way
rANOVA across conditions and sessions showed a significant
main effect for conditions (F(2,6) = 15.68, p = 0.004, η2 =
0.151). Pairwise significance showed that compared to the con-
trol condition, the teleoperated condition (p = 0.036) and semi-
autonomous condition (p = 0.033) both yielded significantly
closer child-robot spacing. The young children were closer to
the robot when the robot was active.

Survey Results: Responses to the engagement and well-being

Fig. 8. Normalized child overground movement over study session. The
markers show the mean, and the error bars illustrate the standard error.

Fig. 9. Distributions of child distance from the robot per minute across
conditions. Boxplots include boxes from the 25th to the 75th percentiles,
center lines with a circle marker for medians, asterisks for means, brackets
for significance, and whiskers up to 1.5 times the interquartile range.

questions from the post-session survey appear in Fig. 11. The
data demonstrates the tendency for the mean engagement and
well-being ratings to increase over time. The standard error
values are small, which signifies a small spread in the ratings
across the participant group.

For the three components of the NARS questionnaire (i.e.,
interaction, social, and emotional aspects of human-robot
interaction) there was no significant change in the interaction
(p = 0.138; M = 2.312, SD = 1.151 before; M = 2.480,
SD = 1.337 after), social (p = 0.685; M = 3.225,
SD = 1.493 before; M = 3.175, SD = 1.534 after), or
emotion (p = 0.075; M = 3.125, SD = 1.227 before;
M = 2.583, SD = 1.381 after) ratings between the start
and end of the experiment. There was no significant differ-
ence between trust ratings at the start and end of the study
(p = 0.606; M = 71.375, SD = 27.130 before; M = 73.750,
SD = 29.698 after).

VI. DISCUSSION

The aim of this research was to investigate how children
respond to GoBot and assess its effectiveness in promoting
physical movement over a longitudinal study.
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Fig. 10. Child distance from robot per minute over study session. Here, a
lower value represents the child being closer to the robot. The markers show
the mean, and the error bars illustrate the standard error.

Fig. 11. Post-session parent ratings of child-GoBot engagement levels and
usefulness for child well-being per session. The markers show the mean, and
the error bars illustrate the standard error.

Our results show support for H1; GoBot tended to promote
more movement in both experimental conditions (i.e., teleoper-
ated and semi-autonomous) compared to the control condition.
This result was previously hinted by the ankle movement count
and was better supported by the results from the normalized
overground movement. The normalized overground movement
data bolster the ankle movement data by resulting in similar
outcomes with a less risky technique (actual child distance
traveled, rather than just vigorous movements of the ankle.
Further, the difference in normalized overground movement
was significant between the control and semi-autonomous
conditions. The trend of more motion during interactions with
an active robot remained consistent over time. Across longi-
tudinal sessions, only the results from the second session’s
teleoperated condition fell below the baseline levels for both
child movement and ankle movement. Anecdotally, parent
free-response input, the trust ratings, and most NARS results
corroborate the notion of the robot’s positive impact. Related
parent statements included “robots encourage [...] interaction
[and] make children excited to play,” and the tendency for
a higher trust rating and lower social and emotional scale
means for the NARS after the study (i.e., less concern that
a robot would be a bad influence on children and feeling
more comfortable being with the robot) are promising. These

results tentatively support the idea of implementing robots to
encourage physical movement to improve the health of (and
healthcare support for) children. For example, these robots
could be implemented in early physical therapy or early
intervention settings, or as part of early childcare infrastructure
(similar to current support from the USDA for healthy food
in daycare settings).

The results provide support for H2. There were no sig-
nificant differences between either motion level outcome for
the teleoperated and semi-autonomous conditions when ana-
lyzing the ankle movement count and the normalized child
movement. This outcome is encouraging as it suggests that
semi-autonomous robot behaviors, which may be more easy-
to-use and practical in intervention settings, can be equally
effective as more effort-intensive direct teleoperation. As one
parent pointed out, this means that (as one example) a semi-
autonomous robot could potentially “keep children active even
when [a parent] might not be able to entertain [their child].”

Our results, from the ankle movement count and normalized
child movement, did not support H3. Contrary to our initial
hypothesis, in almost all cases, child movement remained
consistently higher than baseline throughout the entire study.
Parent ratings, which showed that the robot’s perceived abil-
ities to engage and enhance well-being tended to improve
over time, support this idea that the robot remained effective.
We found this lack of movement and engagement drop-off,
especially in a population with such a short attention span,
to be encouraging. Compared to other types of toys and
electronic devices, robots may possess added potential for
long-term intervention success which may enhance healthcare
for children in ways that were not previously possible.

The results support H4; there was no significant difference
between the child’s responses to the teleoperation and semi-
autonomous condition. For both conditions, the children main-
tained a similar average distance rate from the robot. This
result is promising because it further supports the conclusion
that semi-autonomous robot behaviors can be equally effective
to effort-intensive teleoperated behavior

Key strengths of this research include its relatively long-
term duration and its within-subjects design as recommended
by primers for best human-robot interaction research practices
such as [44]. Within-subject design can help account for indi-
vidual differences, which can be formidable. Our advantageous
design elements enable us to gain insights into the robot’s
impact beyond the initial novelty effect and helped minimize
the noise in our data and display how traces for individuals
match the aggregate trend. Additionally, the assessment of
the system with young children is noteworthy in the field
of assistive robotics. It is uncommon to find human-robot
interaction research with users below three years of age, such
as the participants in our study.

Our study also involves certain limitations. We encoun-
tered typical challenges associated with working with young
children, including fluctuations in mood during the sessions
and variations in individual children’s interests. Additionally,
the interaction times during the study were relatively short,
consisting of five-to-ten-minute conditions.This paper expands
our insights from a past preliminary publication on the same
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study topic, so although the current work presents more
robust findings and new self-report-based insights, it was not
possible to collect further experimental data. To overcome
these limitations, future endeavors could benefit from a larger
sample size, additional study sessions, and longer interaction
periods.

VII. CONCLUSION

The presented study spanned two months and evaluated the
effects of three conditions (two experimental, one baseline)
on child motion. The results consistently indicated that active
robot interventions during play sessions tended to promote
more physical activity, perhaps via the mechanism of encour-
aging children to approach the robot. Furthermore, the trend
in motion levels persisted throughout all of the relatively long
duration of the two-month study. Overall, this work highlights
the potential of assistive robots to influence child physical
activity. The similarity between the results for the teleoperated
and semi-autonomous conditions suggests that users of this
type of robotic system could potentially conserve direct human
effort and allocate these resources towards more enriching
interaction efforts without compromising the success of motor
interventions. Researchers in the fields of robotics and child
motor interventions stand to benefit from the insights garnered
through this study.
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