

A Body-Weight Support System & Assistive Robot Case Study

Ameer Helmi¹, Tze-Hsuan Wang², Samuel W. Logan², Naomi T. Fitter¹

1: Collaborative Robotics and Intelligent Systems (CoRIS) Institute, Oregon State University, Corvallis, OR

2: Disability and Mobility Do-It-Yourself Co-op, Oregon State University, Corvallis, OR

helmia@oregonstate.edu, wangtzeh@oregonstate.edu, logansa@oregonstate.edu, fittern@oregonstate.edu

Objective	Key Insight	Methods
To evaluate how a body-weight support system (BWSS) coupled with an assistive robot could encourage movement and engagement for children	Early evidence that a body-weight support	 7 sessions 2 Baseline, 3 Treatment, 2 Retention Up to 30 minutes of free play while in

with GMFCS Level IV or V motor disabilities

Motivation

- For children with motor disabilities, engaging in physical activity is important to development [1]
- A body-weight support harness can provide support for free play [2]
- Assistive robots may help maintain engagement and encourage movement [3]

Assistive Robots

Shelbytron	GoBot
Lights, music, jokes	Lights, music, air dancer

robot pairing can help a child with a motor disability stay engaged and practicing stepping

narness

We measured motion and engagement through camera tracking and surveys

Participant

- ► Female, 4.1 years old
- GMFCS Level IV
- Unable to independently sit, crawl, or walk, or verbalize

Results

Body-Weight Support System

Enliten Portable Mobility Aid (PUMA)

Participant interacting with GoBot

Participant interacting with Shelbytron

Conclusions & Future Work

Self-initiated stepping increased over

References

- 1. Uchiyama et al., "Locomotor experience affects self and emotion." Developmental Psychology, 2008
- 2. Kokkoni et al., "Use of an in-home body weight support system by a child with spina bifida," Pediatric Phys. Therapy, 2018
- 3. Vora et al., "Influence of a socially assistive robot on physical activity, social play behavior, and toy-use behaviors of children in a free play environment: A within-subjects study," *Frontiers in Robotics and AI*, 2021

the study

- The participant followed the robots around the play space
- Next steps include a longer study with more users and an autonomous
 GoBot
- We will also test Shelbytron's viability to encourage support walker practice

Acknowledgements

This work is sponsored by the U.S. National Science Foundation under award CMMI-2024950.